Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 11(1): 825, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463602

RESUMO

OBJECTIVE: The low investment in research, diagnosis and treatment are factors that contribute to the continuity of Chagas' disease as a neglected tropical diseases (NTDs). In this context, the repositioning of drugs represents a useful strategy, in the search for new chemotherapeutic approaches for NTDs. HIV aspartic peptidase inhibitors (HIV IPs) are good candidates for drug repurposing. Here, we modeled the three dimensional structure of an aspartyl peptidase of Trypanosoma cruzi, the causative agent of Chagas' disease, aligned it to the HIV aspartyl peptidase and performed docking binding assays with the HIV PIs. RESULTS: The 3D structure confirmed the presence of acid aspartic residues, which are critical to enzyme activity. The docking experiment revealed that HIV IPs bind to the active site of the enzyme, being ritonavir and lopinavir the ones with greater affinity. Benznidazole presented the worst binding affinity, this drug is currently used in Chagas' disease treatment and was included as negative control. These results together with previous data on the trypanocidal effect of the HIV PIs support the hypothesis that a T. cruzi aspartyl peptidase can be the intracellular target of these inhibitors. However, the direct demonstration of the inhibition of T. cruzi aspartyl peptidase activity by HIV PIs is still a goal to be persuaded.


Assuntos
Fármacos Anti-HIV/farmacologia , Ácido Aspártico Proteases/química , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/química , Inibidores de Proteases/farmacologia , Trypanosoma cruzi/enzimologia , Sulfato de Atazanavir/farmacologia , Cristalografia por Raios X , Bases de Dados de Proteínas , HIV/efeitos dos fármacos , Nelfinavir/farmacologia , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Saquinavir/farmacologia
2.
PLoS One ; 9(1): e87659, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498160

RESUMO

BACKGROUND: Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. CONCLUSIONS/SIGNIFICANCE: The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/efeitos dos fármacos , DNA de Protozoário/metabolismo , Dipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Protozoários/biossíntese , DNA de Protozoário/genética , Fase G1/efeitos dos fármacos , Humanos , Leishmania , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/enzimologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Protozoários/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...